
Epsilon Constrained Method for Constrained
Multiobjective Optimization Problems: Some Preliminary

Results

Zhixiang Yang, Xinye Cai,Zhun Fan
The College of Computer Science and Technology, The Department of Electrical Engineering

Nanjing University of Aeronautics and Astronautics, Shantou University
xiang052@163.com, xinye@nuaa.edu.cn, zfan@stu.edu.cn

ABSTRACT
In this paper, the ε constrained method and Adaptive op-

erator selection (AOS) are used in Multiobjective evolution-
ary algorithm based on decomposition (MOEA/D). The ε
constrained method is an algorithm transformation method,
which can convert algorithms for unconstrained problems to
algorithms for constrained problems using the ε level com-
parison, which compares search points based on the pair of
objective value and constraint violation of them. AOS is
used to determine the application rates of different opera-
tors in an online manner based on their recent performances
within an optimization process. The experimental results
show our proposed approach for multiobjective constrained
optimization is very competitive compared with other state-
of-art algorithms.

Keywords
Multiobjective evolutionary algorithm based on decom-

position (MOEA/D), Adaptive operator selection, ε Con-
strained method, Constrained optimization problems

1. INTRODUCTION
This paper considers the following constrained multiob-

jective optimization problem:

minimize F (x) = (f1(x), . . . , fm(x))T

subject to gi(x) ≥ 0, i = 1, . . . , p (1)

li ≤ xi ≤ ui, i = 1. . . . , n

where x = (x1, . . . , xn)
T ∈ Rn is an n dimensional vector

of decision variables, the inequalities gi(x) ≥ 0, i = 1, . . . , p,
are constraints. li and ui are the lower and upper bounds of
xi for i = 1, . . . , n. The objective vector function F consists
of m real-valued objective functions.
Multiobjective evolutionary algorithm based on decompo-

sition (MOEA/D) [13] is a recent evolutionary algorithmic
framework for multiobjective optimization, which explicitly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2610012 .

decomposes a multiobjective optimization problem(MOP)
into scalar optimization subproblems and solves these sub-
problems simultaneously by evolving a population of solu-
tions. Its two unconstrained versions: MOEA/D-DE [11]
and MOEA/D-DRA [14], work very well on unconstrained
multiobjective optimization problems (e.g. [15]).

There exist many studies on solving constrained single ob-
jective optimization problems using evolutionary algorithms
(EAs) [2] [8]. Among them, the ε constrained differen-
tial evolution (εDE) is one of the most popular algorithms.
The εDE shows its great performance in solving constrained
single objective optimization problems. The ε constrained
method [5] is an algorithm transformation method, which
can convert constrained optimization problems to uncon-
strained ones using the ε level comparison, which compares
search points based on the pair of objective value and con-
straint violation of them. In this paper, we introduce ε con-
strained method into MOEA/D in order to extend it for
constrained optimization problems.

Furthermore, in order to improve the efficiency of our
approach, an adaptive operator selection (AOS) method is
also adopted in our proposed approach. More specifically, a
bandit-based AOS method (FRRMAB) is employed, which
uses a sliding window to follow the dynamics of the search
process.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related work of constrained multiob-
jective optimization. The following Section 3 is mainly dedi-
cated to the detailed descriptions of our proposed algorithm.
Experimental setting is given in Section 4. Experimental
studies and discussions are detailed in Section 5. The final
conclusions of this paper is in Section 5.

2. THE RELATED WORK

2.1 Tchebycheff Aggregation Function
MOEA/D needs to decompose a multiobjective problem

into a number of single objective subproblems. In this pa-
per, we use the Tchebycheff aggregation function for this
purpose. It is defined as follows:

minimize gte(x|λ, z∗) = max
1≤i≤m

{λi|fi(x)− z∗i |} (2)

subject to x ∈ S

where S is the feasible region. z∗ = (z∗1 , . . . , z
∗
m)T is the

reference point, i.e.,z∗i = min{fi(x)|x ∈ S} for each i =
1, . . . ,m and λ = (λ1, . . . , λm)T is a weight vector, i.e., λ ≥ 0
for all i = 1, . . . ,m and

∑m
i=1 λi = 1.

1181

2.2 Constraint violation and ε level compar-
isons

In the ε constrained method, constraint violation ϕ(x)
is defined. The constraint violation can be given by the
maximum of all constraints or the sum of all constraints.

ϕ(x) = max{max
j

{0, gj(x)},max
j

|hj(x)|} (3)

ϕ(x) =
∑
j

||max{0, gj(x)}||p +
∑
j

||hj(x)||p (4)

where p is a positive number.
The ε level comparisons are defined as an order relation

on a pair of objective function value and constraint violation
(f(x), ϕ(x)). If the constraint violation of a point is greater
than 0, the point is not feasible and its worth is low. The
ε level comparisons are defined basically as a lexicographic
order in which ϕ(x) precedes f(x), because the feasibility of
x is more important than the minimization of f(x). This
precedence can be adjusted by the parameter ε.
Let f1(f2) and ϕ1(ϕ2) be the function values and the con-

straint violation at a point x1(x2), respectively. Then, for
any ε satisfying ε ≥ 0, ε level comparisons <ε and ≤ε be-
tween (f1, ϕ1) and (f2, ϕ2) are defined as follows:

(f1, ϕ1) <ε (f2, ϕ2) ⇔


f1 < f2, if ϕ1, ϕ2 ≤ ε

f1 < f2, if ϕ1 = ϕ2

ϕ1 < ϕ2, otherwise

(5)

(f1, ϕ1) ≤ε (f2, ϕ2) ⇔


f1 ≤ f2, if ϕ1, ϕ2 ≤ ε

f1 ≤ f2, if ϕ1 = ϕ2

ϕ1 < ϕ2, otherwise

(6)

In case of ε = ∞, the ε level comparisons <∞ and ≤∞ are
equivalent to the ordinary comparisons < and ≤ between
function values. Also, in case of ε = 0, <0 and ≤0 are
equivalent to the lexicographic orders in which the constraint
violation ϕ(x) precedes the function value f(x).

2.3 Fitness-Rate-Rank-Based Multiarmed Ban-
dit Adaptive Operator Selection

In this section, we adopt a new bandit-based method for
the to adaptively select operators. The proposed method
pays particular attention to the AOS dynamic nature [9].
This consists of two modules. One is for credit assignment
and the other is for operator selection.

2.3.1 Credit Assignment
In credit assignment, one needs, to address the following

two issues:

1) how to measure the impact in the search process caused
by the application of an operator;

2) how to assign an appropriate credit value to an operator
based on this measured impact.

As for the first issue, the most commonly used approach
is to directly use the raw values of the fitness improvements
caused by the recent uses of the operator under assessment.
However, the range of raw fitness improvements varies from
problem to problem and even at the different stages of an
optimization process. It is common that the raw fitness
improvement value is much larger at early stages than at
later ones. Therefore, as discussed in [3], the direct use of
raw fitness improvement could deteriorate the algorithm’s

robustness. To alleviate this problem, our proposed method
uses the fitness improvement rates (FIR). More specifically,
the FIR achieved by an operator i at time point t is defined
as

FIRi,t =
pfi,t − cfi,t

pfi,t
(7)

where pfi,t is the fitness value of the parent, and cfi,t is
the fitness value of the offspring. A sliding window with
fixed size W is used to store the FIR values of the recently
used operators. It is organized as a first-in, first-out (FIFO)
queue, i.e., the FIR value of the most recently used operator
is added at the tail of the sliding window, while the oldest
record (the item at the head of the queue) is removed to keep
the window size constant. Each slot in the sliding window
stores two components:

1) the index of the operator op used;

2) its FIR value.

The major reason for using the sliding window is that, in
dynamic AOS environments, the performance of an operator
in a very early stage may be irrelevant to its current per-
formance. The sliding window ensures that the stored FIR
information is for the current situation of the search.

To address the second issue set at the outset of this sub-
section, we first compute Rewardi, the sum of all FIR values
for each operator i in the current sliding window. Then, we
rank all these Rewardi values in a descending order. Let
Ranki be the rank value of operator i, inspired by other re-
cently proposed rank-based credit assignment schemes, and
to give more chances to the best operators, we introduce a
decaying factor D ∈ [0, 1] to transform Rewardi to

Decayi = DRanki ×Rewardi. (8)

Then, we assign the following credit value to operator i:

FRRi,t =
Decayi∑K
j=1 Decayj

(9)

Clearly, the smaller the value of D, the larger the influence
for the best operator.

Finally, at each time point t, the operator maximizing the
following function is selected:

FRRi,t + C ×

√
2× ln

∑K
j=1 nj,t

ni,t
(10)

where C is a scaling factor to control the tradeoff between
exploitation (the first term that favors the operators with
best empirical rewards) and exploration (the square root
term that favors the infrequently tried operators). ni,t is the
number of times operator i has been applied in the recent
K applications.

2.3.2 Operator Selection
Based on the received credit values, the operator selection

scheme selects suitable operators to generate new solutions.
This paper uses a bandit-based operator selection scheme.
Our scheme is similar to that used in [3]. The major differ-
ence is that we use FRR values as the quality index instead
of the average of all the rewards received so far for an oper-
ator. In addition, ni indicates the number of times operator
i has been selected in the recent W applications.

The pseudocode of our proposed bandit-based operator
selection scheme is given in Algorithm 1. The combination

1182

of this operator selection with the credit assignment schemes
constitutes is named as FRRMAB in our paper. It is worth
noting that no operator has yet been applied at the begin-
ning of the search; thus, we give each operator an equal
chance to be selected in this case. FRRMAB is not em-
ployed until each operator has been applied at least once.

Algorithm 1: The procedure for the bandit-based operator
selection

1: if There are operators that have not been selected then
2: opt = one that uniformly randomly selected from the

operators pool;
3: else

4: opt = argmax
i={1,...,K}

(FRRi,t + C ×
√

2×ln
∑K

j=1 nj,t

ni,t
)

5: end

3. THE PROPOSED ALGORITHM

3.1 Using FRRMAB to Enhance MOEA/D
Operators Pool: Many different DE mutation operators

have been proposed. Four of them, which present distinct
search characteristics, are chosen for the AOS in our exper-
iments:

1) DE/rand/1

vi = xi + F × (xr1 − xr2); (11)

2) DE/rand/2

vi = xi + F × (xr1 − xr2) + F × (xr3 − xr4); (12)

3) DE/current-to-rand/1

vi = xi +K × (xi − xr1) + F × (xr2 − xr3); (13)

4) DE/current-to-rand/2

vi = xi+K×(xi−xr1)+F×(xr2−xr3)+F×(xr4−xr5);
(14)

where xi is called the target vector and vi is the mutant
vector. The variables xr1, xr2, xr3, xr4, and xr5 are different
solutions randomly selected from P , which are also different
from xi. The scaling factor F > 0 controls the impact of
the vector differences on the mutant vector. K ∈ [0, 1] plays
a similar role to F . For the last two mutation operators,
the offspring is the direct output of mutation, where the
crossover operator will not be used. For the first two muta-
tion operators, a crossover operator is applied upon xi and
vi for generating the offspring ui. The binomial crossover is
used in our experiments. It works as

ui
j =

{
vij , if rand ≤ CR or j = jrand

xi
j , otherwise

(15)

where j ∈ {1, . . . , n} and rand is a uniformly random num-
ber from [0, 1]. The crossover rate CR ∈ [0, 1] is a user-
defined control parameter. jrand is an integer randomly cho-
sen from the set S = 1, . . . , n. After the application of these
DE operators, a generated offspring might undergo, with a
small probability, the polynomial mutation operator.

Reward Calculation: In a recent work on AOS for se-
lecting DE mutation operators, a DE mutation operator
is rewarded based on the fitness improvement of the off-
spring compared with its corresponding target vector. In
MOEA/D, different solutions correspond to different sub-
problems, and thus, different comparisons are based on dif-
ferent aggregations of objective functions. In this paper, if
an offspring successfully replaces xi, the DE mutation oper-
ator that generates it will receive the following reward:

η =
g(xi|λi, z∗)− g(y|λi, z∗)

g(xi|λi, z∗)
(16)

where λi is the weight vector for subproblem i.
An operator op may receive several rewards due to its

generated offspring y. We sum up all these reward values as
its final reward FIRop.

3.2 Controlling the ε level
Usually, the ε level is controlled according to the equa-

tion(17). The initial ε level ε(0) is the constraint violation
of the top θ-th individual in the initial search points. The
ε level is updated until the number of iterations t becomes
the control generation Tc. After the number of iterations
exceeds Tc, the ε level is set to 0 to obtain solutions with
minimum constraint violation.

ε(0) = ϕ(xθ)

ε(t) =

{
ε(0)(1− t

Tc
)cp), 0 < t < Tc

0, t ≥ Tc

(17)

where xθ is the top θ-th individual. If θ > 1, ϕ(xθ) =
θ ×maxx ϕ(x).

In this study, a simple scheme of setting the parameter
value cp is proposed: The ε level is adjusted to be a small
value ελ = 10−5 at the generation Tλ = 0.95Tc.

ε(Tλ) = ε(0)(1− Tλ/Tc) = ελ (18)

cp = (log ε− log ε(0))/ log(1− Tλ/Tc) (19)

= (−5− log ε(0))/ log 0.05 (20)

To avoid too small value of cp, if cp is less than cpmin, cp
is to be cpmin where cpmin = 3. Also, after Tλ, in order to
increase the ε level, to enlarge ε-feasible region and to search
better objective values, cp is decreased and F is increased
as follows:

cp = 0.3cp+ 0.7cpmin (21)

F = 0.3F0 + 0.7 (22)

3.3 Applying the ε Constrained Method and
FRRMAB to MOEA/D

In this paper, we employ the ε constrained method and
FRRMAB into MOEA/D-DE framework. The pseudocode
of the whole algorithm is detailed in Algorithm 2.

4. EXPERIMENTAL SETTINGS AND PER-
FORMANCE INDICATOR

4.1 Parameters Settings
The parameters settings of our proposed approach are

given as follows:

1. N : 600 for two objectives and 1000 for three objectives;

1183

2. The number of decision variables of the test instances
is set to 10;

3. T = 0.1N and nr = 0.01N ;

4. δ = 0.9;

5. In DE and mutation operators: CR = 1.0 and F = 0.5,
η = 20 and pm = 1/n.

6. Stopping criterion: the algorithm stops after 300,000
function evaluations for each test instance.

7. Control parameters in FRRMAB:
Scaling factor: C = 5.0;
Size of sliding window: W = 0.5×N ;
Decaying factor: D = 1.0.

8. Control parameters in the ε level comparison:
Tc: 800 for two objectives and 1000 for three objec-
tives;
θ = 1.5.

4.2 Performance Metric IGD
Let P ∗ be a set of uniformly distributed points along the

PF. Let A be an approximate set to the PF, the average
distance from P ∗ to A is defined as:

D(A,P) =

∑
v∈P∗ d(v,A)

|P ∗| (23)

where d(v,A) is the minimum Euclidean distance between
v and the points in A. If P ∗ is large enough to repre-
sent the PF very well, D(A,P) could measure both the di-
versity and convergence of A in a sense. Ten constrained
MOPs (CF1 to CF10) [16] are used in our experimental
studies. CMOEA/D-DE-ATP and the three best perform-
ers [10], [7], [6] in CEC 2009 MOEA competition are com-
pared with our proposed method. All of them have been run
30 times independently for each test instance.

5. EXPERIMENTAL RESULTS AND DISCUS-
SIONS

Table 1 summarizes the performance of various algorithms
in terms of IGD metric in statistics based on 30 indepen-
dent runs. These state-of-art approaches include our pro-
posed approach (YC) and approach proposed by Jan and
Zhang(JZ [4]), and Tseng and Chen(TC [10]), Liu and li
(LL [6]), and Liu et. al’s (LI [7]).
It is clear to see that our proposed algorithm has the best

(lowest) IGD values for CF1, CF6, and CF10. It can also
be observed that our proposed approach has better per-
formance than CMOEA/D-DE-ATP [12] on most test in-
stances. This indicates that using FRRMAB and the ε
method to MOEAD-DE is beneficial, compared with penalty
function.

6. CONCLUSION
In this paper, the ε constrained method and a bandit-

based AOS method FRRMAB are introduced into the MOEA
/D-DE framework to tackle constrained multiobjective opti-
mization problems. The experimental results show the pro-
posed algorithm is very competitive on most CF test in-
stances compared with other state-of-art approaches. The
results of our proposed algorithm is very preliminary. The
future works include further improvement of the performance
through adopting advanced learning mechanisms.

Algorithm 2:MOEAD-εDE
Input:

1. CMOP(1);

2. a stopping criterion;

3. N : the number of subproblems; the population size of
P and A;

4. a uniform spread of N weight vectors: λ1, . . . ,λN ;

5. T : the number of the weight vectors in the neighbor-
hood of each weight vector.

Output: A set of non-dominated solutions EP;
Step 1 Initialization:

a) Compute the Euclidean distances between any two
weight vectors and then work out the T closest weight
vectors to each weight vector. For each i = 1, . . . , N ,
set B(i) = i1, . . . , iT where λi1 , . . . , λiT are the T clos-
est weight vectors to λi.

b) Generate an initial population x1, . . . , xN by uniformly
randomly sampling from the search space.

c) Initialize z = (z1, . . . , zm)T by setting zi =
min{fi(x1), fi(x

2), . . . , fi(x
N)}.

d) Set gen = 1 and ε = ε(0).

Step 2 Update:
For each i = 1, . . . , N , do:
a) Selection of operator: The operator op is selected

according to the Algorithm 1.

b) Selection of Mating/Update Range: Uniformly
randomly generate a number rand from (0,1). If
rand < δ, then set P = B(i), otherwise P = 1, . . . , N .

c) Reproduction: Randomly select some indexes from
P , and then generate a solution y′ by the application of
the chosen DE mutation operator op over the selected
solutions; Then apply polynomial mutation operator
on y′ with probability pm, to produce the offspring y;

d) Repair: If an element of y is out of the boundary, its
value is reset to be randomly selected value inside the
boundary.

e) Evaluate y : FV y = F (y), V (y) =
|
∑p

j=1 min(gj(y), 0)|.
f) Update of z : For each j = 1, . . . ,m,if zj > fj(y),

then set zj = fj(y).

g) Update of Neighboring Solutions: For each index
j ∈ P , if (gte(y|λj , z), ϕ(y)) <ε (gte(xj |λj , z), ϕ(xj)),
then set xj = y and FV j = F (y).

h) Evaluate FIRop: Sum up the rewards that are gen-
erated by the update of y as the FIRop value.

i) Update of FIFO queue: The node which is com-
bined operator op and FRR value is added at the tail
of the FIFO queue. Then, the FRR values are evalu-
ated for each operator according to the FIFO queue.

j) Update of EP: Remove from EP all the vectors dom-
inated by F (y′). Add to EP if no vectors in EP domi-
nate F (y′).

Step 3: Stopping Criteria: If stopping criteria is satisfied,
then stop and output EP.

Step 4: Control the ε level: ε = ε(gen), ε(gen) is de-
scribed in equation (17).

Step 5: Set gen = gen+ 1. Go to Step 2.

1184

Table 1: The Comparison of Various Algorithms in IGD. The results in boldface indicate the best performance

Instance CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10

best

YC 0.000021 0.0026 0.0738 0.0077 0.031 0.0059 0.0343 0.0678 0.0455 0.0973
JZ 0.000314 0.002568 0.052966 0.005301 0.060908 0.007778 0.048766 0.070507 0.039339 0.142689
TC 0.013854 0.004142 0.0753 0.008937 0.017565 0.009568 0.018691 0.621968 0.072071 0.117317
LL 0.000682 0.002733 0.090844 0.008964 0.058818 0.009022 0.05351 0.047328 0.046035 0.105482
LI 0.007061 0.001579 0.038062 0.005523 0.007872 0.006186 0.010424 0.038785 0.119107 0.098377

worst

YC 0.000066 0.026 0.2723 0.0134 0.2789 0.0132 0.2007 0.0827 0.0536 0.521
JZ 0.001102 0.089054 0.387998 0.128202 0.47448 0.061374 0.525922 0.111194 0.061451 1.273927
TC 0.023597 0.051815 0.142828 0.014276 0.027832 0.038112 0.037144 1.42867 0.096282 0.163473
LL 0.001147 0.013135 0.251884 0.023999 0.192996 0.019939 0.203867 0.098487 0.058389 0.416232
LI 0.016932 0.003063 0.070731 0.011552 0.039396 0.03112 0.033821 0.065014 0.206549 0.239399

mean

YC 0.000040 0.005 0.1771 0.0106 0.1247 0.008 0.0684 0.0759 0.0499 0.2309
JZ 0.00054 0.009402 0.185618 0.015356 0.227288 0.034201 0.200548 0.086989 0.04897 0.325308
TC 0.019187 0.026779 0.10446 0.011096 0.020779 0.016168 0.024695 1.08544 0.085139 0.137648
LL 0.000859 0.004203 0.182905 0.014232 0.10973 0.013948 0.10446 0.060746 0.050549 0.197409
LI 0.011311 0.0021 0.056305 0.006995 0.015773 0.01502 0.019051 0.047501 0.143432 0.162128

st.dev.

YC 0.000012 0.0041 0.0363 0.0014 0.0836 0.002 0.0406 0.0035 0.0018 0.1452
JZ 0.000184 0.021539 0.079894 0.023468 0.116536 0.015884 0.115529 0.009889 0.006329 0.290022
TC 0.002568 0.014715 0.015595 0.001368 0.002421 0.005985 0.004654 0.219108 0.008191 0.009215
LL 0.00011 0.002635 0.042127 0.003293 0.030676 0.002586 0.035116 0.012972 0.003357 0.076004
LI 0.002758 0.000453 0.007573 0.001457 0.006662 0.006462 0.006123 0.006387 0.021416 0.031621

7. REFERENCES
[1] Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2009, Trondheim, Norway, 18-21
May, 2009. IEEE, 2009.

[2] C. A. Coello Coello. Theoretical and numerical
constraint-handling techniques used with evolutionary
algorithms: a survey of the state of the art. Computer
methods in applied mechanics and engineering,
191(11):1245–1287, 2002.

[3] Á. Fialho. Adaptive operator selection for
optimization. PhD, Ecole Doctorale d’Informatique,
Universite Paris-Sud, Paris, 2010.

[4] M. A. Jan and Q. Zhang. Eee moea/d for constrained
multiobjective optimization: Some preliminary
experimental results. UKCI, 2010.

[5] K. Li, Á. Fialho, S. Kwong, and Q. Zhang. Adaptive
operator selection with bandits for a multiobjective
evolutionary algorithm based on decomposition. IEEE
Trans. Evolutionary Computation, 18(1):114–130,
2014.

[6] H. lin Liu and X. Li. The multiobjective evolutionary
algorithm based on determined weight and
sub-regional search. In IEEE Congress on
Evolutionary Computation [1], pages 1928–1934.

[7] M. Liu, X. Zou, Y. Chen, and Z. Wu. Performance
assessment of dmoea-dd with cec 2009 moea
competition test instances. In IEEE Congress on
Evolutionary Computation [1], pages 2913–2918.

[8] T. Takahama and S. Sakai. Constrained optimization
by applying the α constrained method to the
nonlinear simplex method with mutations.
Evolutionary Computation, IEEE Transactions on,
9(5):437–451, 2005.

[9] T. Takahama and S. Sakai. Efficient constrained
optimization by the constrained differential evolution
with rough approximation using kernel regression. In
IEEE Congress on Evolutionary Computation, pages
1334–1341. IEEE, 2013.

[10] L.-Y. Tseng and C. Chen. Multiple trajectory search
for unconstrained/constrained multi-objective
optimization. In IEEE Congress on Evolutionary
Computation [1], pages 1951–1958.

[11] J. Yao, Q. Zhang, and J. Lei. Recent developments in
natural computation. Neurocomputing,
72(13-15):2833–2834, 2009.

[12] Q. Zhang et al. Moea/d for constrained multiobjective
optimization: Some preliminary experimental results.
In 2010 UK Workshop on Computational Intelligence
(UKCI), pages 1–6, 2010.

[13] Q. Zhang and H. Li. Moea/d: A multiobjective
evolutionary algorithm based on decomposition. IEEE
Trans. Evolutionary Computation, 11(6):712–731,
2007.

[14] Q. Zhang, W. Liu, and H. Li. The performance of a
new version of moea/d on cec09 unconstrained mop
test instances. In IEEE Congress on Evolutionary
Computation [1], pages 203–208.

[15] Q. Zhang, W. Liu, and H. Li. The performance of a
new version of moea/d on cec09 unconstrained mop
test instances. In IEEE Congress on Evolutionary
Computation [1], pages 203–208.

[16] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu,
and S. Tiwari. Multiobjective optimization test
instances for the cec 2009 special session and
competition. University of Essex, Colchester, UK and
Nanyang Technological University, Singapore, Special
Session on Performance Assessment of Multi-Objective
Optimization Algorithms, Technical Report, 2008.

1185

